There is a fundamental difference between detecting a CH 6 and a CH5 proton in the $\omega 3$ dimension. If one detects CH 6 , and if the frequency of CH6 overlaps with the resonance of another H6 proton, nothing is gained by using the 3D experiment relative to 2D NMR because the magnetization transfer pathway (sugar protons $\xrightarrow{11} \mathrm{CH} 6 \xrightarrow{12} \mathrm{CH} 6$) is the same as the original 2D NOESY transfer. Overlap of the H6/sugar proton NOESY cross peaks remains. In addition, the true 3D cross peaks which could possibly resolve the overlap (sugar protons $\xrightarrow{\xrightarrow{\longrightarrow}} \mathrm{CH} 5 \xrightarrow{12} \mathrm{CH} 6$) have little or no intensity because the direct NOESY magnetization transfer between sugar protons and CH 5 is very inefficient.

However, if the CH5 frequency in the $\omega 3$ dimension is detected, the CH6 of the same base via the TOCSY mixing process is detected (sugar protons $\xrightarrow{11}$ CH6 $\xrightarrow{12} \mathrm{CH} 5$). In that case if CH 6 overlaps with another H 6 resonance then the CH 6 will be selectively detected. Parts A and B of Figure 3 compare two $\omega 3$ planes ($\omega 2=7.32 \mathrm{ppm}$ region shown only) detected at the frequency of C9 H5 or C9 H6. In the regular 2D NOESY spectrum, T8 H6 resonates at the same frequency as C 9 H 6 and therefore the cross peaks $\mathrm{C} 9 \mathrm{H} 6 / \mathrm{T} 8 \mathrm{H1}{ }^{\prime}, \mathrm{C} 9 \mathrm{H} 6 / \mathrm{T} 8 \mathrm{H} 2^{\prime}$, and $\mathrm{C} 9 \mathrm{H} 6 / \mathrm{T} 8$ $\mathrm{H} 2^{\prime \prime}$ are undetectable because they are hidden by the cross peaks T8 H6/T8 H1', T8 H6/T8 H2', and T8 H6/T8 H2 $2^{\prime \prime}$. By detecting the $\omega 3$ plane at the C 9 H 5 frequency, one clearly sees that the signals originating from T 8 H 6 have disappeared. One can now detect and unambiguously assign $\mathrm{C} 9 \mathrm{H} 6 / \mathrm{T} 8 \mathrm{H1}{ }^{\prime}, \mathrm{C} 9 \mathrm{H} 6 / \mathrm{T} 8$ $\mathrm{H} 2^{\prime}$, and $\mathrm{C} 9 \mathrm{H} 6 / \mathrm{T} 8 \mathrm{H} 2^{\prime \prime}$.

This single 3D spectrum provides the information for assigning all of the nonexchangeable protons including even strongly overlapping peaks in crowded spectral regions such as the H5' and $\mathrm{H}^{\prime \prime}$ protons in a much more reliable manner than 2D NMR and greatly simplifies the process for assignment of all the protons in the system. This experiment is particularly useful for C and T bases, where the scalar coupling between CH 5 and CH 6 , and between TH6 and TCH3, allows one to take full advantage of the increased resolution provided by the TOCSY mixing process. ${ }^{25}$
(5) Griesinger, C.; Sørensen, O. W.; Ernst, R. R. J. Magn. Reson. 1989, 84, 14-63.
(6) Griesinger, C.; Sørensen, O. W.; Ernst, R. R. J. Magn. Reson. 1987, 73, 574-579.
(7) Oschkinat, H.; Griesinger, C.; Kraulis, P. J.; Sørensen, O. W.; Ernst, R. R.; Gronenborn, A. M.; Clore, G. M. Nature 1988, 332, 374-376.
(8) Vuister, G. W.; Boelens, R.; Kaptein, R. J. Magn. Reson. 1988, 80 , 176-185.
(9) Oschkinat, H.; Cieslar, C.; Groneborn, A. M.; Clore, G. M. J. Magn. Reson. 1989, 81, 212-216.
(10) Oschkinat, H.; Cieslar, C.; Holak, T. A.; Clore, G. M.; Gronenborn, A. M. J. Magn. Reson. 1989, 83, 450-472.
(11) Zuiderweg, R. P.; Fesik, W. Biochemistry 1989, 28, 2387-2391.
(12) Marion, D.; Kay, L. E.; Sparks, S. W.; Torchia, D. A.; Bax, A. J. Am. Chem. Soc. 1989, III, i515-1517.
(13) Padilla, A.; Vuister, G. W.; Boelens, R.; Kleywegt, G. J.; Cave, A.; Parello, J.; Kaptein, R. J. Am. Chem. Soc. 1990, //2, 5024-5030. Boelens, R.; Vuister, G. W.; Konig, T. M. G.; Kaptein, R. J. Am. Chem. Soc. 1989, 1/2, 8525-8526.
(14) Vuister, G.; Boelens, R.; Padilla, A.; Kleuwegt, G.; Kaptein, R. Biochemistry 1990, 29, 1829-1839.
(15) Kessler, H.; Gemmecker, G.; Steuernagel, S. Angew. Chem., Int. Ed. Engl. 1988, 27, 564-566.
(16) Nikonowicz, E. P.; Meadows, R. P.; Gorenstein, D. G. Biochemistry 1990, 29, 4193-4204.
(17) Pardi, A.; Morden, K. M.; Patel, D. J.; Tinoco, 1. Biochemistry 1982, 2I, 6567.
(18) Kalnik, M. W.; Kouchakdjian, M.; Li, B. F. L.; Swann, P. F.; Patel, D. J. Biochemistry 1988, 27, 108.
(19) Quignard, E.; Fazakerley, G. V.; Van der Marel, G.; van Boom, J. H.; Guschlbauer, W. Nucleic Acids Res. 1987, 15, 3397.
(20) Tibanyenda, N.; De Burin, S. H.; Hasnoot, C. A. G.; van der Marel, G. A.; van Boom, J. H.; Hilbers, C. W. Eur. J. Biochem. 1984, 139, 19. (21) Shah, D. O.; Lai, K.; Gorenstein, D. G. J. Am. Chem. Soc. 1984, I06, 4302.
(22) States, D. J.; Haberkorn, R. A.; Rueben, D. J. J. Magn. Reson. 1982, 48, 286-292.
(23) Bax, A.; Davis, D. G. J. Magn. Reson. 1985, 65, 355-360.
(24) Davis, D. G.; Bax, A. J. Am. Chem. Soc. 1985, 107, 2820-2821.
(25) After the completion of this work, we became aware of a similar experiment described by C. W. Hilbers (poster abstract, Proceedings of the 14 th NMR Conference on Magnetic Resonance in Biological Systems, 9-14 Sept 1990, Warwick, England).

Acknowledgment, This work was supported by the NIH (AI27744), the Purdue University Biochemical Magnetic Resonance Laboratory, which is supported by the National AIDS Research Center at Purdue (AI727713), and the NSF National Biological Facilities Center on Biomolecular NMR, Structure and Design at Purdue (Grants BBS 8614177 and 8714258 from the Division of Biological Instrumentation). We greatly appreciate the contributions of Donna Beiswanger as well as Claude Jones and Dean Carlson for NMR discussion and those of Vikram Roongta for the synthesis of the dodecamer.

Novel Zirconocene-Promoted Carbon-Carbon Bond Formation via a 1,2-Migration Reaction of Alkynylzirconium Derivatives

Kentaro Takagi, ${ }^{\text {ab }}$ Christophe J. Rousset, ${ }^{16}$ and Ei-ichì Negishi*

Department of Chemistry, Purdue University
West Lafayette, Indiana 47907
Received January 8, 1990
We report on a novel class of carbon-carbon bond forming reaction of alkynylzirconocene derivatives which, we believe, proceeds via 1,2 -migration as in eqs 1 and 2 (Scheme I). One distinguishing feature of the reaction is that, unlike some other known 1,2-migration reactions such as those involving α, β-unsaturated organoborates, ${ }^{2}$ it proceeds without the assistance of an external electrophile. In search for new migratory insertion reactions of organotransition metals, ${ }^{3-5}$ we generated $\mathrm{Li}\left[\mathrm{Cp}_{2} \mathrm{Zr}\right.$ $(\mathrm{C} \equiv \mathrm{CPh})_{3}$] (1a) by treating $\mathrm{Cp}_{2} \mathrm{ZrCl}_{2}$, where $\mathrm{Cp}=\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}$, with 3 equiv of $\mathrm{LiC} \equiv \mathrm{CPh}$ in THF at -78 to $25^{\circ} \mathrm{C}$ over a few hours. Treatment of 1a with 3 N HCl indeed produced (Z)-1,4-di-phenyl-1-buten-3-yne (2a) as a $>96 \%$ isomerically pure compound in 61% GLC yield based on Zr (eq 1). Similarly, the reaction of $\mathrm{Cp}_{2} \mathrm{ZrCl}_{2}$ with 3 equiv of $\mathrm{LiC} \equiv \mathrm{CC}(\mathrm{Me})=\mathrm{CH}_{2}$, followed by iodinolysis with 2 equiv of I_{2}, produced 3 c in almost quantitative GLC yield along with 4-iodo-2-methyl-1-buten-3-yne (100% based on Zr) (eq 1).

Zirconocene derivatives containing both alkynyl and aryl groups also undergo a similar reaction. Thus, treatment of preformed $\mathrm{Cp}_{2} \mathrm{Zr}(\mathrm{C} \equiv \mathrm{CPh})_{2}{ }^{6 \mathrm{a}}$ with 2 equiv of $\mathrm{PhLi}\left(-78\right.$ to $\left.25^{\circ} \mathrm{C}\right)$ provided, upon quenching with $3 \mathrm{~N} \mathrm{HCl},(Z)$-stilbene (5a) in 85% GLC yield based on Zr along with only a 6% yield of 2 a , and the reaction of $\mathrm{Cp}_{2} \mathrm{ZrPh}_{2}{ }^{6 \mathrm{~b}}$ with 1 equiv of $\mathrm{LiC} \equiv \mathrm{CPh}$ provided, after treatment with $3 \mathrm{~N} \mathrm{HCl},>98 \%$ isomerically pure 5 a in 81% GLC yield (eq 2). The amount of $\mathbf{2 a}$ was trace, if any. The use of DCl in place of HCl gave (Z)-dideuteriostilbene with $>95 \%$ deuterium in-
(1) (a) On leave from Okayama University, Okayama, Japan. A part of this work was performed at Okayama University subsequent to the leave of absence. (b) David Ross Fellow, Purdue University (1988-1990).
(2) For reviews, see: (a) Negishi, E. In Comprehensive Organometallic Chemistry; Wilkinson, G., Stone, F. G. A., Abel, E. W., Eds.; Pergamon: Oxford, 1982; Vol. 5, pp 255-363. (b) Pelter, A.; Smith, K.; Brown, H. C. Borane Reagents; Academic Press: New York, 1988
(3) For our previous work on this topic, see Negishi, E.; Akiyoshi, K.; O'Connor, B.; Wu, G. J. Am. Chem. Soc. 1989, III, 3089.
(4) For migratory insertion reactions of organozirconiums with CO and isonitriles, see, for example: (a) Bertelo, C. A.; Schwartz, J. J. Am. Chem. Soc. 1975, 97, 228. (b) Wolczanski, P. T.; Bercaw, J. E. Acc. Chem. Res. 1980, 13, 121. (c) Erker, G. Acc. Chem. Res. 1984, 17, 103. (d) Buchwald, S. L.; LaMaire, S. Tetrahedron Lett. 1987, 28, 295. (e) Negishi, E.; Swanson, D. R.; Miller, S. R. Tetrahedron Lett. 1988, 29, 1631.
(5) For other migratory insertion reactions of organozirconiums, see, for example: (a) Mintz, E. A.; Ward, A. S.; Tice, D. S. Organometallics 1985, 4, 1308. (b) Mintz, E. A.; Ward, A. S. J. Organomet. Chem. 1986, 307, C52. (c) Ward, A. S.; Mintz, E. A.; Ayers, M. R. Organometallics 1986, 5, 1585,
(6) (a) Jimenez, R.; Barral, M. C.; Moreno, V.; Santes, A. J. Organomet. Chem. 1979, 182, 353. (b) Samuel, E.; Rausch, M. D. J. Am. Chem. Soc. 1973, 95, 6263.

Scheme I

Table I. Carbon-Carbon Bond Formation of Alkynylzirconium Derivatives ${ }^{a}$

R^{1} of $\mathrm{Cp}_{2} \mathrm{ZrR}^{1}{ }_{2}$	LiR^{2}	quenching		product yield	
		reagent	product ${ }^{\text {b }}$	GLC	isolated
$\mathrm{C} \equiv \mathrm{CPh}$	$\mathrm{LiC} \equiv \mathrm{CPh}$	HCl	$(Z)-\mathrm{PhCH}=\mathrm{CHC} \equiv \mathrm{CPh}$	61	
$\mathrm{C} \equiv$ CHex-n	$\mathrm{LiC} \equiv \mathrm{CHex}-\mathrm{n}$	HCl	(Z) $\cdot n \cdot \mathrm{HexCH}=\mathrm{CHC} \equiv \mathrm{CHex}-n$	60	55
$\mathrm{C} \equiv \mathrm{CC}(\mathrm{Me})=\mathrm{CH}_{2}$	$\mathrm{LiC} \equiv \mathrm{CC}(\mathrm{Me})=\mathrm{CH}_{2}$	$\mathrm{I}_{2}{ }^{\text {c }}$	$\mathrm{CH}_{2}=(\mathrm{Me}) \mathrm{CC} \equiv \mathrm{CC} \equiv \mathrm{CC}(\mathrm{Me})=\mathrm{CH}_{2}$	100	
$\mathrm{C} \equiv \mathrm{CPh}$	$\mathrm{LiPh}^{\text {d }}$	HCl	$(Z) \cdot \mathrm{PhCH}=\mathrm{CHPh}$	85	54
$\mathrm{C} \equiv \mathrm{CTol}-\mathrm{p}$	LiPh ${ }^{\text {d }}$	HCl	(Z) - $\mathrm{PhCH}=$ CHTol -p		77
$\mathrm{C}=\mathrm{CPh}$	$\mathrm{LiC}_{6} \mathrm{H}_{4} \mathrm{OMe}-p^{\text {d }}$	HCl	(Z). $\mathrm{PhCH}=\mathrm{CHC}_{6} \mathrm{H}_{4} \mathrm{OMe}-p$		75
$\mathrm{C} \equiv \mathrm{CPh}$	$\mathrm{LiC}_{6} \mathrm{H}_{4} \mathrm{CF}_{3}-p^{d}$	HCl	(Z) $\mathrm{PhCH}=\mathrm{CHC}_{6} \mathrm{H}_{4} \mathrm{CF}_{3}-p$		43
Ph	$\mathrm{LiC} \equiv \mathrm{CPh}$	HCl	(Z) $-\mathrm{PhCH}=\mathrm{CHPh}$	81	60
Ph	$\mathrm{LiC} \equiv \mathrm{CHex}-\mathrm{n}$	HCl	(Z) $-\mathrm{PhCH}=\mathrm{CHHex}-n$	55	45
Ph	$\mathrm{LiC} \equiv \mathrm{CC}(\mathrm{Me})=\mathrm{CH}_{2}$	$1_{2}{ }^{\text {c }}$	$\mathrm{PhC} \equiv \mathrm{CC}(\mathrm{Me})=\mathrm{CH}_{2}$	80	60

${ }^{a}$ The reactions were run in THF at -78 to $25^{\circ} \mathrm{C}$ for a few to several hours. ${ }^{b}$ The alkene products were $>96 \% ~ Z$. ${ }^{c}$ Two to three molar equivalents of I_{2} used. ${ }^{d}$ Two equivalents of LiR^{2} used.
corporation. The experimental results are summarized in Table I.

Although clarification of the mechanistic details is still continuing, the following are worth noting. First, $\mathrm{Cp}_{2} \mathrm{Zr}(\mathrm{C} \equiv \mathrm{CR})_{2}{ }^{6 a}$ are generally stable for days at $25^{\circ} \mathrm{C}$, and their protonolysis provides quantitatively the starting alkynes. Therefore, the third equivalent of $\mathrm{LiC} \equiv \mathrm{CR}$ or LiAr is essential to obtaining the products of carbon-carbon bond formation. Secondly, the following results indicate that the reaction proceeds via zirconate species and that it is not assisted by an external electrophile. Thus, for example, treatment of $\mathrm{Cp}_{2} \mathrm{ZrCl}_{2}$ with 3 equiv of $\mathrm{LiC} \equiv \mathrm{CHex}-n$ at -78 to $25^{\circ} \mathrm{C}$ (over 1 h) gave a $\mathrm{Cp}_{2} \mathrm{Zr}$ derivative which exhibited a ${ }^{1} \mathrm{H}$ NMR singlet for the Cp group at δ 5.93. A very minor signal $(\leq 4 \%)$ at $\delta 5.62$ was also discernible. Quenching the mixture with 3 N HCl at this time produced only a $\leq 4 \%$ yield of 2b, along with 1 -octyne recovered to the extent of 90%. These results are consistent with the intermediary formation of $\mathrm{Li}\left[\mathrm{Cp}_{2} \mathrm{Zr}(\mathrm{C} \equiv \mathrm{CHex}-\right.$ $n)_{3}$] ($\mathbf{1 b}$). The signal at $\delta 5.62$ gradually grew, and its integration after 48 h at $25^{\circ} \mathrm{C}$ corresponded to a 70% NMR yield of a new ZrCp_{2} derivative. Analysis by GLC of the protonolysis product indicated that $\mathbf{2 b}$ was produced in 60% yield by GLC based on Zr as the only octyne dimerization product. Clearly, formation of $\mathbf{2 b}$ requires some transformation of the initially formed intermediate prior to protonolysis, establishing that it is not induced by HCl . Thirdly, the formation of 4 or 7 as the products before
quenching with HCl or I_{2} has been further supported by the following data. As reported previously, treatment of $\mathrm{Cp}_{2} \mathrm{Zr}(\mathrm{Bu}-n)_{2}$ with 1 equiv of $\mathrm{PhC} \equiv \mathrm{CPh}$ in the presence of 4 -(dimethylamino) pyridine (DMAP) or PMe_{3} in THF gave a 90% NMR yield of $8^{7}(\delta 5.85)$ or a 98% NMR yield of $9^{8}[\delta 5.77(\mathrm{~d}, J=2 \mathrm{~Hz})]$, respectively. Treatment of $\mathbf{8}$ with PMe_{3} cleanly provided $\mathbf{9}$ in 80% NMR yield. Significantly, treatment of 8 with PhLi (2 equiv) produced a 70% NMR yield of a ZrCp_{2} derivative ($\delta 5.62$) indistinguishable from that obtained by treatment of $\mathrm{Cp}_{2} \mathrm{ZrPh}_{2}$ (δ 6.41) with $\mathrm{LiC} \equiv \mathrm{CPh}{ }^{9}$ The structure 7a may now be assigned to this ZrCp_{2} derivative. Although both samples of 7 a proved to be inert to alkynes, ${ }^{78,10}$ such as 4 -octyne, their reaction with acetonc ${ }^{78,10}$ ($4-6$ equiv) at $25^{\circ} \mathrm{C}$ for 6 h followed by treatment with 3 N HCl provided 10 in $70-75 \%$ isolated yield, ${ }^{11}$ further supporting the assignment made above (eq 3). Unfortunately, both samples of 7a obtained as described above contained a ca.

[^0]15% NMR yield of another ZrCp_{2} derivative, which was indistinguishable from a species obtained by treating $1,1-\mathrm{bis}\left(\eta^{5}-\right.$ cyclopentadienyl)-2,3,4,5-tetraphenyl-1-zirconacyclopentadiene with PhLi . This contamination hampered attempts to obtain 7a as a pure compound, Furthermore, its ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were relatively uninformative. ${ }^{12,13}$ Fourthly, treatment of $\mathrm{Cp}_{2} \mathrm{Zr}(\mathrm{C} \equiv \mathrm{CTol}-p)_{2}$ with 2 equiv of PhLi in the presence of $\mathrm{PhC} \equiv \mathrm{CPh}$ produced, after protonolysis with 3 N HCl , a 62% GLC yield of $(Z)-\mathrm{PhCH}=$ CHTol $-p$ without producing (Z)stilbene ($<0,2 \%$ if any). Tolan was recovered to the extent of 86%. The results clearly rule out dissociative mechanisms, such as that proceeding via reductive elimination to give free $\mathrm{PhC} \equiv \mathrm{CTol}-p$ followed by complexation, and point to a nondissociative mechanism, such as 1,2-migration,

Acknowledgment. We thank the National Science Foundation (CHE-8921899) for support of this research. Additional support by the Ministry of Education, Japan, Okayama University, and Purdue University (David Ross Fellowship) are also gratefully acknowledged.

Supplementary Material Available: IR and ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR data for product enynes and alkenes (3 pages). Ordering information is given on any current masthead page.
(10) For related works on the reactions of alkyne- ZrCp_{2} complexes, see: (a) Erker, G.; Kropp, K. J. Am. Chem. Soc. 1979, 101, 3659. (b) Kropp, K.; Erker, G. Organometallics 1982, I, 1246. (c) Buchwald, S. L.; Watson, B. T.; Huffman, J. C. J. Am. Chem. Soc. 1986, 108, 7411. (d) Buchwald, S. L.; Lum, R. T.; Dewan, J. C. J. Am. Chem. Soc. 1986, 108, 7441 . (e) Buchwald, S. L.; Nielsen, R. B. Chem. Rev. 1988, 88, 1047 and references therein.
(11) Under comparable conditions, 8 reacted readily with alkynes, acetone, and benzaldehyde to give the expected five-membered zirconacycles, which were protonolyzed to give the corresponding dienes and allylic alcohols. ${ }^{7,8,10}$
(12) Attempts to obtain crystalline samples of 7a for X-ray analysis have so far failed.
(13) The most informative NMR data were obtained with $4 \mathrm{c} .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}, \mathrm{Me}_{4} \mathrm{Si}\right): \delta 1.73(\mathrm{~s}, 3 \mathrm{H}), 1.81(\mathrm{~s}, 3 \mathrm{H}), 2.33(\mathrm{~s}, 3 \mathrm{H}), 4.8-4.85(\mathrm{~m}, 2$ H), 4.9-4.95 (m, 1 H), $5.0-5.05(\mathrm{~m}, 1 \mathrm{H}), 5.25-5.3(\mathrm{~m}, 2 \mathrm{H}), 5.57(\mathrm{~s}, 10 \mathrm{H})$. In addition, the ${ }^{1} \mathrm{H}$ signals for approximately two molecules of THF per complex were seen at $\delta 1.15-1.3$ and $3.4-3.55 .{ }^{13} \mathrm{C} \mathrm{NMR} \mathrm{(THF-d} d_{8}, \mathrm{Me}_{4} \mathrm{Si}$): $\delta 23.17,24.49,24.83,97.84,104.97(\mathrm{Cp}), 107.75,114.39\left(\mathrm{CH}_{2}\right), 114.91$ $\left(\mathrm{CH}_{2}\right), 114.99\left(\mathrm{CH}_{2}\right), 126.73,130.28,130.77,131.70,134.82,148.34,207.32$.

Regioselective and Enantioselective Substitution of Allylic Sulfoximines with Organocopper Reagents. A Versatile Approach to Optically Active Isocarbacyclins

Jörg Bund, Hans-Joachim Gais,* and Irene Erdelmeier

Institut für Organische Chemie und Biochemie
Albert-Ludwigs Universität, Albertstrasse 21
D-7800 Freiburg, Federal Republic of Germany

Received May 31, 1990
Carbacyclin (1) ${ }^{\text {ta }}$ and isocarbacyclin (3), ${ }^{\text {bb }}$ stable analogues of the unstable hemostase regulator prostacyclin (2), ${ }^{1 \mathrm{c}}$ are the prototypes of a new generation of antithrombotic drugs. Modification mainly of their side chains has led to the attainment of highly potent derivatives ${ }^{2}$ which show great promise for the

[^1]Scheme I

Scheme

Scheme II

treatment of obliterative peripheral artery disease. ${ }^{3}$ Recently we described a stereoselective synthesis of carbacyclins via Ni -catalyzed cross-coupling reactions of the enantiomerically pure alkenyl sulfoximine 4^{4} with organozinc compounds. ${ }^{5}$ We reasoned that 4 would likewise allow for a versatile synthesis of isocarbacyclins ${ }^{6}$ provided it can be isomerized to the allylic sulfoximine 5 and this in turn made to allylate organocopper reagents such as, e.g., $\mathrm{LiCu}\left[\left(\mathrm{CH}_{2}\right)_{4} \mathrm{OCH}(\mathrm{Me}) \mathrm{OEt}\right]_{2}(6 \mathrm{a})^{7 \mathrm{a}}$ or $\mathrm{Cu}\left(\mathrm{CH}_{2}\right)_{4} \mathrm{OCH}(\mathrm{Me}) \mathrm{OEt}$ (6b), ${ }^{7 \mathrm{a}}$ and $\mathrm{ClMgCu}\left(\mathrm{CH}_{2} \mathrm{OCH}_{2} \mathrm{Ph}\right)_{2}$ (7a) or $\mathrm{CuCH}_{2} \mathrm{OCH}_{2} \mathrm{Ph}$ (7 b), ${ }^{76}$ to give the precursors $8^{6 \mathrm{~b}}$ and $9,9,2 \mathrm{~b}, 2 \mathrm{r}$ respectively (Scheme I) ${ }^{8}$ which were synthesized previously (with other protecting groups) by less direct routes.

Allylic sulfones gained synthetic importance since they allow the allylation of carbon electrophiles as well as nucleophiles via alkylation of their mono- ${ }^{9}$ and dicarbanion ${ }^{10,11 f}$ salts and transition metal mediated substitution with organometallics or carbanion

[^2]
[^0]: (7) Van Wagenen, B. C.; Livinghouse, T. Tetrahedron Lett. 1989, 30 , 3495.
 (8) Takahashi, T.; Swanson, D. R.; Negishi, E. Chem. Lett. 1987, 623.
 (9) In sharp contrast, neither treatment of 9 with PhLi nor that of 7a with PMe_{3} at room temperature led to interconversion between 7 a and 9 . Other unsuccessful attempts to prepare 7a include treatment of $\mathrm{Cp}_{2} \mathrm{Zr}(\mathrm{Cl}) \mathrm{Me}$ with $\mathrm{PhCH}=\mathrm{C}(\mathrm{Li}) \mathrm{Ph}$, which was complicated by facile $Z-$ to- E isomerization of the alkenyllithium, and treatment of $\mathrm{PhC} \equiv \mathrm{CPh}$ with $\mathrm{Cp}_{2} \mathrm{Zr}(\mathrm{Cl}) \mathrm{H}$, which did not give the desired hydrozirconation product in more than $5-10 \%$ yield.

[^1]: (1) (a) Kojima, K.; Sakai, K. Tetrahedron Lett. 1978, 19, 3743. (b) Shibasaki, M.; Torisawa, Y.; Ikegami, S. Tetrahedron Lett. 1983, 24, 3493. (c) Moncada, S.; Gryglewski, R.; Bunting, S.; Vane, J. R. Nature 1976, 263, 663.
 (2) (a) Skuballa, W.; Vorbrüggen, H. Angew. Chem., Int. Ed. Engl. 1981, 20, 1046. (b) Aristoff, P. A.; Johnson, P. D.; Harrison, A. W. J. Org. Chem. 1983, 48, 5341 . (c) Flohé, L.; Böhlke, H.; Frankus, E.; Kim, S.-M. A.; Lintz, W.; Loschen, G.; Michel, G.; Müller, B.; Schneider, J.; Seipp, U.; Vollenberg, W.; Wilsmann, K. Arzneim.-Forsch./Drug Res. 1983, 33, 1240. (d) Skuballa, W.; Schillinger, E.; Stürzebecher, C.-S.; Vorbrüggen, H. J. Med. Chem. 1986, 29, 313. (c) Kojima, K.; Amemiya, S.; Koyama, K.; Saito, S.; Oshima, T.; 1to, T. Chem. Pharm. Bull. 1987, 35, 4006. (f) Nickolson, R. C.; Town, M. H.; Vorbrüggen, H. Med. Res. Rev. 1985, 5, 1 and references cited therein.

[^2]: (3) Skuballa, W.; Schäfer, M. Nachr. Chem., Tech. Lab. 1989, 37, 584.
 (4) Erdelmeier, I.; Gais, H.-J.; Lindner, H. J. Angew. Chem., Inl. Ed. Engl. 1986, $25,935$.
 (5) Erdelmeier, 1.; Gais, H.-J. J. Am. Chem. Soc. 1989, III, 1125.
 (6) For recent syntheses, see: (a) Sodeoka, M.; Ogawa, Y.; Mase, T.; Shibasaki, M. Chem. Pharm. Bull. 1989, 37, 586. (b) Hemmerle, H.; Gais, H.-J. Angew. Chem., Int. Ed. Engl. 1989, 28, 1540. (c) Hashimoto, S.; Kase, S.; Shinoda, T.; Ikegami, S. Chem. Lett. 1989, 1063.
 (7) (a) Gardette, M.; Alexakis, A.; Normant, J. F. Tetrahedron 1985, 41, 5887. (b) Hutchinson, D. K.; Fuchs, P. L. J. Am. Chem. Soc. 1987, 109, 4930.
 (8) For the synthesis of isocarbacyclins via substitution of allylic acetates or alcohols with organocopper reagents, see refs $6 \mathrm{a}, \mathrm{b}$ and the following: Bannai, K.; Tanaka, T.; Okamura, N.; Hazato, A.; Sugiura, S.; Manabe, K.; Tomimori, K.; Kurozumi, S. Tetrahedron Lett. 1986, 27, 6353.
 (9) See, for example: Gais, H.-J.; Vollhardt, J.; Lindner, H. J. Angew Chem., Int. Ed. Engl. 1986, 25, 939 and references cited therein. Trost, B. M. Bull. Chem. Soc. Jpn. 1988, 61, 107 and references cited therein.
 (10) (a) Vollhardt, J.; Gais, H.J., Lukas, K. L. Angew. Chem., Int. Ed. Engl. 1985, 24, 610. (b) Gais, H.-J.; Vollhardt, J. Tetrahedron Lett. 1988, 29, 1529. (c) Trost, B. M.; Merlic, C. A. J. Am. Chem. Soc. 1988, IIO, 5216.

